Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters








Language
Year range
1.
The Korean Journal of Internal Medicine ; : 949-961, 2021.
Article in English | WPRIM | ID: wpr-903676

ABSTRACT

Background/Aims@#Coenzyme Q10 (CoQ10), is a promising antioxidant; however, low bioavailability owing to lipid-solubility is a limiting factor. We developed water-soluble CoQ10 (CoQ10-W) and compared its effects with conventional lipid-soluble CoQ10 (CoQ10-L) in an experimental model of chronic tacrolimus (Tac) nephropathy. @*Methods@#CoQ10-W was developed from a glycyrrhizic-carnitine mixed layer CoQ10 micelle based on acyltransferases. Chronic nephropathy was induced in rats with 28-day Tac treatment; they were concomitantly treated with CoQ10-L or CoQ10-W. CoQ10 level in plasma and kidney were measured using liquid chromatography–mass spectrometry. CoQ10-W and CoQ10-L effects on Tac-induced nephropathy were assessed in terms of renal function, histopathology, oxidative stress, and apoptotic cell death. Their effects on cell viability and reactive oxygen species (ROS) production were assessed in cultured proximal tubular cells, human kidney 2 (HK-2) cells. @*Results@#The plasma CoQ10 level was significantly higher in the CoQ10-W group than in the CoQ10-L group. Tac treatment caused renal dysfunction, typical pathologic lesions, and oxidative stress markers. Serum creatinine was restored in the Tac + CoQ10-L or CoQ10-W groups compared with that in the Tac group. CoQ10-W administration reduced oxidative stress and apoptosis markers. Mitochondrial ultrastructure assessment revealed that the addition of CoQ10-L or CoQ10-W with Tac increased mitochondrial size and number than Tac treatment alone. In vitro investigations revealed that both CoQ10-L and CoQ10-W improved cell viability and reduced ROS production in the Tac-induced HK-2 cell injury. @*Conclusions@#CoQ10-W has a better therapeutic effect in Tac-induced renal injury than conventional CoQ10-L, possibly associated with improved CoQ10 bioavailability

2.
The Korean Journal of Internal Medicine ; : 949-961, 2021.
Article in English | WPRIM | ID: wpr-895972

ABSTRACT

Background/Aims@#Coenzyme Q10 (CoQ10), is a promising antioxidant; however, low bioavailability owing to lipid-solubility is a limiting factor. We developed water-soluble CoQ10 (CoQ10-W) and compared its effects with conventional lipid-soluble CoQ10 (CoQ10-L) in an experimental model of chronic tacrolimus (Tac) nephropathy. @*Methods@#CoQ10-W was developed from a glycyrrhizic-carnitine mixed layer CoQ10 micelle based on acyltransferases. Chronic nephropathy was induced in rats with 28-day Tac treatment; they were concomitantly treated with CoQ10-L or CoQ10-W. CoQ10 level in plasma and kidney were measured using liquid chromatography–mass spectrometry. CoQ10-W and CoQ10-L effects on Tac-induced nephropathy were assessed in terms of renal function, histopathology, oxidative stress, and apoptotic cell death. Their effects on cell viability and reactive oxygen species (ROS) production were assessed in cultured proximal tubular cells, human kidney 2 (HK-2) cells. @*Results@#The plasma CoQ10 level was significantly higher in the CoQ10-W group than in the CoQ10-L group. Tac treatment caused renal dysfunction, typical pathologic lesions, and oxidative stress markers. Serum creatinine was restored in the Tac + CoQ10-L or CoQ10-W groups compared with that in the Tac group. CoQ10-W administration reduced oxidative stress and apoptosis markers. Mitochondrial ultrastructure assessment revealed that the addition of CoQ10-L or CoQ10-W with Tac increased mitochondrial size and number than Tac treatment alone. In vitro investigations revealed that both CoQ10-L and CoQ10-W improved cell viability and reduced ROS production in the Tac-induced HK-2 cell injury. @*Conclusions@#CoQ10-W has a better therapeutic effect in Tac-induced renal injury than conventional CoQ10-L, possibly associated with improved CoQ10 bioavailability

3.
The Korean Journal of Internal Medicine ; : 1443-1456, 2020.
Article | WPRIM | ID: wpr-831888

ABSTRACT

Background/Aims@#Coenzyme Q10 (CoQ10) has antioxidant effects and is commercially available and marketed extensively. However, due to its low bioavailability, its effects are still controversial. We developed a water-soluble CoQ10-based micelle formulation (CoQ10-W) and tested it in an experimental model of tacrolimus (TAC)-induced diabetes mellitus (DM). @*Methods@#We developed CoQ10-W from a glycyrrhizic-carnitine mixed layer CoQ10 micelle preparation based on acyltransferases. TAC-induced DM rats were treated with either lipid-soluble CoQ10 (CoQ10-L) or CoQ10-W for 4 weeks. Their plasma and pancreatic CoQ10 concentrations were measured using liquid chromatography- tandem mass spectrometry. The therapeutic efficacies of CoQ10-W and CoQ10-L on TAC-induced DM were compared using functional and morphological parameters and their effects on cell viability and reactive oxygen species (ROS) production were also evaluated in cultured rat insulinoma cells. @*Results@#The plasma CoQ10 level was significantly increased in the CoQ10-W group compared to that in the CoQ10-L group. Intraperitoneal glucose tolerance tests and glucose-stimulated insulin secretion revealed that CoQ10-W controlled hyperglycemia and restored insulin secretion significantly better than CoQ10-L. The TAC-mediated decrease in pancreatic islet size was significantly attenuated by CoQ10-W but not by CoQ10-L. TAC-induced oxidative stress and apoptosis were significantly more reduced by CoQ10-W than CoQ10-L. Electron microscopy revealed that CoQ10-W restored TAC-induced attenuation in the number of insulin granules and the average mitochondrial area, unlike CoQ10-L. In vitro studies showed that CoQ10-L and CoQ10-W both improved cell viability and reduced ROS production in TAC-treated islet cells to a similar extent. @*Conclusions@#CoQ10-W has better therapeutic efficacy than CoQ10-L in TAC-induced DM.

SELECTION OF CITATIONS
SEARCH DETAIL